LIST OF FIGURES

Figure 1.	Schematic diagrams of 2-D and 3-D heat-conduction problems
Figure 2.	Geometric configurations tested by the 2-D heat-conduction problem
Figure 3.	Geometric elements tested by the 3-D heat-conduction problem
Figure 4.	Schematic drawing of the problem geometry and boundary conditions for the temperature-in-a-wellbore problem
Figure 5.	Schematic drawing of the problem geometry and boundary conditions for the transient pressure problem
Figure 6.	Schematic drawing of the problem geometry for the test of the one-dimensional infiltration problem
Figure 7.	Schematic diagram of the geometry and boundary conditions for the vapor-extraction problem
Figure 8.	Schematic diagram of the geometry and boundary conditions for the dual-porosity problem
Figure 9.	Schematic diagram of the Avdonin problem geometry with boundary and initial conditions
Figure 10.	Solution domain and saturation results for the Toronyi problem
Figure 11.	Schematic diagram of the geometry and boundary conditions for the DOE Code Comparison Project problem
Figure 12.	Schematic drawing of the geometry and boundary conditions for the dry-out simulations
Figure 13.	Schematic drawing of the geometry and boundary conditions for the 1-D reactive-tracer transport problem
Figure 14.	Schematic drawing of the geometry and boundary conditions for the tests of Henry's Law species
Figure 15.	Schematic drawing of the geometry and boundary conditions for the fracture transport problem
Figure 16.	Schematic drawing of the geometry and boundary conditions for the calcitedissolution problem
Figure 17.	Aqueous and mineral-front profiles modeled by the analytical solution
Figure 18.	Schematic drawing of the geometry and boundary conditions for the cobalt transport problem
Figure 19.	Model domain and flow boundary conditions for test of the radionuclide transport problem
Figure 20.	Comparison of FEHM enthalpies to the NBS/NRC Steam Tables data

Figure 21.	Comparison of FEHM densities to the NBS/NRC Steam Tables data
Figure 22.	Comparison of FEHM compressibilities to the NBS/NRC Steam Tables data 136
Figure 23.	Comparison of FEHM viscosities to the NBS/NRC Steam Tables data
Figure 24.	Comparison of FEHM saturation pressures and temperatures to the NBS/NRC Steam Tables data
Figure 25.	Comparison of FEHM and analytical solutions for 2-D heat conduction at coordinate position $x=y=0$ m
Figure 25.	Comparison of FEHM and analytical solutions for 2-D heat conduction at time t = 2.16e4 seconds
Figure 25.	Comparison of FEHM and analytical solutions for 3-D heat conduction at coordinate position $x=y=z=0$ m
Figure 25.	Comparison of FEHM and analytical solutions for 3-D heat conduction at time t = 2.16e4 seconds
Figure 29.	Comparison of FEHM and Ramey analytical solutions for temperature versus time at $d=1000\ m$ and $d=2000\ m$
Figure 30.	Comparison of FEHM and Ramey analytical solutions for temperature versus depth at t = 25 days
Figure 31.	Comparison of FEHM and Theis solutions for pressure versus time at $r=0.00144\ m$ and $r=3.44825\ m$ from the wellbore
Figure 32.	Comparison of FEHM and Theis solutions for pressure versus position at t = 1 day
Figure 33.	Comparison of FEHM and TOUGH2 saturations for an equivalent-continuum model
Figure 34.	Comparison of FEHM and TOUGH2 matrix saturation for a double-porosity/double-permeability model
Figure 35.	Comparison of FEHM and TOUGH2 fracture saturation for a double-porosity/double-permeability model
Figure 36.	Comparison of FEHM steady-state vapor pressure with Shan analytical solution for an isotropic reservoir
Figure 37.	Comparison of FEHM steady-state vapor pressure with Shan analytical solution for an anisotropic reservoir
Figure 38.	Comparison of FEHM and analytical solution for dual-porosity case 1
Figure 39.	Comparison of FEHM and analytical solution for dual-porosity case 2
Figure 40.	Comparison of FEHM and analytical solution for dual-porosity case 3
Figure 41.	Comparison of FEHM and Avdonin analytical solutions for temperature versus time at r = 37.5 m from injection well

Figure 42.	Comparison of FEHM and Avdonin analytical solutions for temperature versus position at t = 1.e9 seconds	. 155
Figure 43.	Toronyi saturation field at t = 78.31 days	. 156
Figure 44.	FEHM saturation field at t = 78.31 days.	. 156
Figure 45.	Comparison of FEHM production-well temperatures with results from other codes.	. 158
Figure 46.	Comparison of FEHM production- and observation-well pressure drops with results from other codes	. 158
Figure 47.	Comparison of FEHM and analytical solutions for the position of a dry-out front in a partially saturated medium.	. 160
Figure 48.	Comparison of FEHM and SORBEQ outlet concentrations for the conservative tracer	. 161
Figure 49.	Comparison of FEHM and SORBEQ outlet concentrations for the linear isotherm.	. 162
Figure 50.	Comparison of FEHM and SORBEQ outlet concentrations for the Langmuir isotherm.	. 162
Figure 51.	Comparison of FEHM and SORBEQ outlet concentrations for the Freundlich isotherm.	. 163
Figure 52.	Comparison of FEHM and SORBEQ outlet concentrations for the modified Freundlich isotherm.	. 163
Figure 53.	Comparison of FEHM results with the analytical solution for a mobile air phase	. 165
Figure 54.	Comparison of FEHM results with the analytical solution for a mobile water phase.	. 165
Figure 55.	Comparison of FEHM results with the analytical solution for a mobile water phase with reactions.	. 166
Figure 56.	Comparison of FEHM and Tang analytical solutions for concentration versus time for the matrix-diffusion model	. 167
Figure 57.	Comparison of FEHM and the analytical solution for the position of the dissolved mineral front at the final time of the simulation	. 168
Figure 58.	Comparison of FEHM and PDREACT for the breakthrough curves of aqueous species.	. 170
Figure 59.	Comparison of FEHM and PDREACT for the exit concentration versus time for solid species.	. 170
Figure 60.	Comparison of FEHM and TRACRN results for the concentration-time history at position 1.	. 172
Figure 61.	Comparison of FEHM and TRACRN results for the concentration-time history at position 2.	. 172

Figure 62.	Comparison of FEHM and TRACRN results for the concentration-time history at position 3.	173
Figure 63.	Comparison of FEHM and TRACRN results for the concentration-time history at position 4.	173